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Research

Analytic procedures for environmental and 
biomedical data often have a limit of detec-
tion (LOD), which is defined as the lowest 
concentration level of a substance that can be 
determined to be statistically different from 
a blank value with a stated confidence level. 
Because values < LOD (nondetections) can-
not be determined precisely, data are missing 
for the lower end of the distribution (i.e., left- 
censored). However, values < LOD are infor-
mative because they indicate that the analyte 
has a concentration between 0 and LOD, 
and simply excluding such values from analy-
ses may substantially bias results (Hornung 
and Reed 1990). A variety of methods have 
been proposed for handling values < LOD, as 
described in detail by Helsel (2005b, 2010). 
For example, simple substitution methods, 
parametric methods, nonparametric Kaplan-
Meier methods, and robust regression on order 
statistics methods can be used to obtain sum-
mary statistics (e.g., means, standard deviations, 
medians, and percentiles) for left-censored 
data. Simple substitution methods, paramet-
ric methods based on survival techniques,  
and nonparametric methods, such as the 
Wilcoxon rank-sum test, can be used for group 
comparisons. For example, Millard and Deverel 

(1988) used nonparametric methods to com-
pare zinc concentrations in shallow ground
water collected from two different locations.

For more in-depth analysis such as 
regression modeling, the simple substitution 
methods are the easiest to implement. These 
methods involve substituting a single value 
chosen from the interval from zero to the 
LOD for each value < LOD. The most com-
monly used substitutions are zero, LOD/2, 
LOD/√

–2, or LOD (Barr et  al. 2006). 
However, replacing a sizable portion of the 
data with a single value increases the likeli-
hood that the resulting parameter estimates 
will be biased (Helsel 1990). Consequently, 
standardized data quality assessment guide-
lines outlined by the U.S. Environmental 
Protection Agency (EPA) do not recommend 
simple substitution when 15% or more of 
values are < LOD (U.S. EPA 2000).

Instead of simple substitution for the 
values < LOD, an alternative is to assume 
a specific parametric distribution (e.g., left-
censored log-normal distribution) for the 
left-censored data. Likelihood-based estima-
tion can be performed based on the detected 
values and the observed percentage of values  
< LOD. These distributional methods have 

been applied to both cross-sectional data 
(Lynn 2001; Taylor et al. 2001) and longitudi-
nal data (Hughes 1999; Jacqmin-Gadda et al. 
2000; Lyles et al. 2001a, 2001b; Thiébaut 
and Jacqmin-Gadda 2004) when the analyte 
is the outcome of interest. However, they do 
not perform well in the situations where the 
assumed parametric distribution is incorrect, 
the data set is small, and/or the percentage of 
censoring is high (Helsel 2005a). In addition, 
these pure parametric approaches are not 
applicable when the analyte is an indepen-
dent variable (exposure or predictor) rather 
than the outcome.

Distribution-based multiple imputation 
(MI) methods offer an increasingly compel-
ling alternative for the analysis of left-censored 
data (Baccarelli et al. 2005; Huybrechts et al. 
2002; Lubin et al. 2004). These methods use 
maximum likelihood estimates (MLEs) to 
estimate distribution parameters based on 
the available data (both the observed values 
> LOD and the proportion of values < LOD) 
that are subsequently used to impute values 
for observations < LOD so that a complete 
data set is created. Because the imputed val-
ues cannot be treated as actual measured data, 
the imputation process is usually repeated 
several times to create multiple complete 
data sets. Each complete data set is analyzed, 
and the results are combined to account for 
the uncertainty resulting from MI methods 
(Little and Rubin 2002). Distribution-based 
MI methods assume that the observations 
> and < LOD come from a common para-
metric distribution. They are robust to mild 
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Background: Environmental and biomedical researchers frequently encounter laboratory data 
constrained by a lower limit of detection (LOD). Commonly used methods to address these left-
censored data, such as simple substitution of a constant for all values < LOD, may bias parameter 
estimation. In contrast, multiple imputation (MI) methods yield valid and robust parameter esti-
mates and explicit imputed values for variables that can be analyzed as outcomes or predictors. 

Objective: In this article we expand distribution-based MI methods for left-censored data to a 
bivariate setting, specifically, a longitudinal study with biological measures at two points in time.

Methods: We have presented the likelihood function for a bivariate normal distribution taking 
into account values < LOD as well as missing data assumed missing at random, and we use the 
estimated distributional parameters to impute values < LOD and to generate multiple plausible data 
sets for analysis by standard statistical methods. We conducted a simulation study to evaluate the 
sampling properties of the estimators, and we illustrate a practical application using data from the 
Community Participatory Approach to Measuring Farmworker Pesticide Exposure (PACE3) study 
to estimate associations between urinary acephate (APE) concentrations (indicating pesticide expo-
sure) at two points in time and self-reported symptoms.

Results: Simulation study results demonstrated that imputed and observed values together were 
consistent with the assumed and estimated underlying distribution. Our analysis of PACE3 data 
using MI to impute APE values < LOD showed that urinary APE concentration was significantly 
associated with potential pesticide poisoning symptoms. Results based on simple substitution meth-
ods were substantially different from those based on the MI method.

Conclusions: The distribution-based MI method is a valid and feasible approach to analyze bivari-
ate data with values < LOD, especially when explicit values for the nondetections are needed. We 
recommend the use of this approach in environmental and biomedical research.
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or moderate departures of the observed data 
from the assumed underlying distribution 
(Huybrechts et al. 2002), and they provide 
accurate estimates of population parameters 
for moderate sample size (at least 50 obser-
vations) even when the proportion of non
detects is high (Baccarelli et al. 2005; Lubin 
et al. 2004). In addition, they can be applied 
when the analyte of interest is an outcome or 
a predictor.

Left-censored longitudinal data pose ana-
lytical challenges to the application of the 
distribution-based MI methods. For cross-
sectional data, only the mean and the vari-
ance of a specified univariate distribution 
need to be estimated. However, in the lon-
gitudinal setting, the mean vector and the 
entire variance–covariance matrix must be 
estimated so that MI can be performed. The 
objective of this article is to illustrate how 
left-censored bivariate data (i.e., longitudinal 
data with observations < LOD for an ana-
lyte measured on two different occasions, or 
cross-sectional data with observations < LOD 
for two different analytes) can be imputed 
based on a bivariate normal distribution and 
analyzed using an MI approach. We first 
derive the likelihood function for a truncated 
bivariate normal distribution with missing 
data then describe an MI method for values 
< LOD. Next we present results of a simula-
tion study to evaluate the ML and MI estima-
tors. Finally, we illustrate the application of 
the distribution-based MI method using data 
from the Community Participatory Approach 
to Measuring Farmworker Pesticide Exposure 
(PACE3) study.

Methods
Estimating the parameters from a bivariate 
normal distribution. Let (xi, yi) denote two 
measures on subject i, i = 1, . . . , n. In prac-
tice, (xi, yi) can be repeated measures of the 
same analyte (as in a longitudinal analysis) or 
measures of two different analytes. We assume 
that (xi, yi) are independently and identically 
distributed as bivariate normal with mean 
(µx, µy), variance (σ2

x,σ2
y), and correlation coef-

ficient ρ. It follows that the marginal distribu-
tions and the conditional distributions are also 
normal. We further assume that both xi and yi 
are subject to left censoring. For simplicity, 
we use the same known LOD L for both xi 
and yi in the derivation below, but differences 
in the LODs for xi and yi (e.g., because of 
differences in laboratory procedures) can be 
incorporated with a slight modification of the 
likelihood function. In addition to data that 
are missing because of values < LOD (not 
missing at random), we also may have miss-
ing data for xi and yi for other reasons (e.g., 
because an analytic sample was not obtained), 
and we assume in this article that such data 
are missing at random (MAR). Therefore, the 

likelihood function depends on eight possible 
data patterns (l1 – l8) determined by three 
possible types of values (observed, < LOD, or 
MAR) for the two variables, xi and yi (Lyles 
et al. 2001b).

When both (xi, yi) are known (> LOD), 
their contribution to the likelihood function 
(l1) is simply the joint density function of a 
bivariate normal distribution. That is,
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When xi is known and yi is <  LOD, 
their contribution to the likelihood function 
(l2) can be expressed as the product of the 
marginal distribution of xi and the condi-
tional probability of yi < LOD given that xi is 
observed:
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where µy|xi = µy + ρ(σy /σx)(xi – µx), σ2
y|x = 

σ2
y (1 – ρ2), and Φ represents the cumulative 

distribution function of a standard normal. 
Similarly, when yi is known and xi is < LOD, 
their contribution to the likelihood function 
(l3) can be expressed as
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where µx|yi = µx + ρ(σx /σy)(yi – µy) and σ2
x|y = 

σ2
x (1 – ρ2). When both xi and yi are < LOD, 

their contribution to the likelihood function 
(l4) is the probability of xi and yi both being 
< L (the value of the LOD) under a bivariate 
normal distribution:

	 l4 = Pr (Xi < L ∩ Yi < L).	 [4]

This can be derived directly from f (xi, yi) 
and evaluated through a close numerical 
approximation.

When xi is known and yi is MAR, their 
contribution to the likelihood function (l5) is 
simply the marginal distribution function of 

xi. Similarly, when yi is known and xi is MAR, 
their contribution to the likelihood function 
(l6) is the marginal distribution function of yi. 
When xi is < LOD and yi is MAR, or when yi 
is < LOD and xi is MAR, their contributions 
to the likelihood function l7 and l8 are the 
unconditional probability of xi < LOD and 
yi < LOD, respectively:
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The final likelihood function is the prod-
uct of l1 through l8 over the entire sample 
space. The log-likelihood function can then 
be maximized using various optimization rou-
tines available in many commercial software 
packages. In this article, we used a nonlinear 
optimization routine by Newton-Raphson 
ridge method in SAS IML (SAS Institute Inc., 
Cary, NC).

In our article, we use bivariate normal dis-
tributions as the basis of our studies, but in 
some circumstances observations < LOD may 
have some clusters of true zero values, and in 
these cases, imputing a strictly positive value 
between 0 and LOD (or a value below loga-
rithmic LOD) will bias the results. Using a 
mixture distribution such as a zero-inflated 
lognormal to define the likelihood function is 
a feasible method to address this issue but is 
beyond the scope of this article.

MI for values < LOD. After the log-like-
lihood function is created using all available 
data [including observations with known  
values > LOD (detections), observations with 
values < LOD (nondetections), and observa-
tions that are MAR], we can derive MLEs of 
(µx, µy), (σ2

x , σ2
y ), and ρ. Let (µ̂x, µ̂y), (σ̂2

x, σ̂2
y ), 

and ρ̂ be the corresponding MLEs of param-
eters for the bivariate normal distribution of 
X and Y. The parameter estimates for a con-
ditional distribution such as µ̂y |xi and σ̂2

y |x 
can be calculated based on standard bivari-
ate normal theory and the invariance prop-
erty of MLE. Although values < LOD can be 
imputed by sampling from the estimated dis-
tribution based on (µ̂x, µ̂y), (σ̂2

x, σ̂2
y ), and ρ̂, we 

note that the MLEs are themselves estimated 
with uncertainty. Therefore, to account for 
uncertainty in parameter estimation, we use 
estimates from a series of bootstrapped sam-
ples based on maximum likelihood approach 
to impute values < LOD (Little and Rubin 
2002). Bootstrap data are generated by ran-
dom sampling with replacement (Efron 1979) 
so that each bootstrap sample is the same 
size as the original sample (including detec-
tions, nondetections, and MAR observations). 
For each bootstrap data set, the likelihood 
function is constructed as described above 
to obtain estimates (µ~ x, µ

~
y), (σ

~ 2
x, σ

~ 2
y), and ρ~. 
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Because each bootstrap data set yields differ-
ent estimates for (µx, µy), (σ2

x, σ2
y), and ρ, we 

have a series of (µ~ x, µ
~

y), (σ
~ 2

x, σ
~ 2

y), and ρ~ to use 
for subsequent imputations, thus accounting 
for the uncertainty in the parameter estima-
tion. Then, one imputation is carried out for 
nondetections in the original data set using 
one set of (µ~ x, µ

~
y), (σ

~ 2
x, σ

~ 2
y), and ρ~ as follows.

When xi is known and yi is < LOD, a ran-
dom draw from the conditional distribution 
of yi given the observed value of xi truncated 
at the LOD is used to impute a value for yi. In 
this way, we ensure that only values < LOD are 
imputed for nondetections. Similarly, a value 
of xi can be imputed when yi is known and xi 
is < LOD. In the situation where both xi and 
yi are < LOD, both values are imputed simul-
taneously from a truncated bivariate normal 
distribution with parameters (µ~x, µ

~
y), (σ

~ 2
x, σ

~ 2
y), 

and ρ~. When either xi or yi is MAR and the 
other variable is < LOD, the < LOD value is 
imputed based on the estimated marginal dis-
tribution (a truncated univariate normal).

The whole process, that is generating a 
bootstrap sample, estimating (µx, µy), (σ2

x, σ2
y) 

and ρ for the bootstrap sample using maxi-
mum likelihood and imputing data that are 

< LOD based on (µ~ x, µ
~

y), (σ
~ 2

x , σ
~ 2

y), and ρ~ are 
repeated to create multiple imputed data sets, 
thereby accounting for the uncertainty in the 
imputed values. It has been shown that the 
efficiency of an estimate based on m imputed 
data sets is approximately (1 + γ/m)–1, where 
γ is the rate of missing information for the 
quantity being estimated (Little and Rubin 
2002). Unless γ is very high (e.g., 80–90%), 
good efficiencies can generally be achieved 
with 3–10 imputed data sets. Thus, we used 
five bootstrap samples to obtain five sets of 
distribution parameter estimates, from which 
we generated five imputed data sets on the 
original data in this analysis. Because the 
imputed nondetectable values are all random 
draws based on the estimated bivariate nor-
mal distribution, the correlation between the 
repeated measures in a longitudinal study is 
retained, even with observations < LOD.

Simulation study. We conducted a simu-
lation study to evaluate the sampling property 
of MLEs and MI estimators under different 
scenarios. For each scenario, we calculate 
MLEs for the distribution parameters from 
the (simulated) original data set. In addition, 
we estimate distribution parameters for each 

of five bootstrap samples, use the estimated 
parameters to impute values < LOD for the 
original sample from which we generated the 
five bootstrap samples, and combine results 
across the five imputed data sets to obtain MI 
estimates. For all scenarios, we assume that the 
bivariate normal random variables (X, Y) have 
population parameters µx = 0, σ2

x = σ2
y  = 1. 

We varied the correlation between X and Y 
such that ρ = 0.2, 0.5, or 0.8, and we set the 
value of µy and the proportion of observations 
< LOD so that the marginal distributions 
of X and Y were subject to various degrees 
of left censoring (for example, µy = –0.76 
with 10% of observations < LOD for X and 
30% < LOD for Y; for details, see Figure 1). 
Finally, we evaluated the performance of these 
methods for two different sample sizes (n = 50 
and n = 200). For each combination of per-
centage of censoring, correlation coefficient, 
and sample size, we generated 5,000 replicates 
to approximate the sampling distribution of 
the MLE and MI estimator.

The overall pattern was very similar for 
different correlations (details not shown). 
Therefore, to simplify the presentation of 
results, we report results of scenarios where 

Figure 1. (A) MLEs and MI estimates for µx (left) and µy (right) from 5,000 simulated samples. The true value for µx is 0; the true values for µy are –0.76, –0.59, 
–0.52, –0.51, and –0.52 for (10, 30), (20, 40), (30, 50), (40, 60), and (50, 70) percent of (X, Y) < LOD, respectively. The true value of µy is represented by the red reference 
bars. (B) MLEs and MI estimates for σ2

x (left), σ2
y  (middle), and ρ (right) from 5,000 simulated samples. The true values for σ2

x, σ2
y , and ρ are 1, 1, and 0.2, respectively. 
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ρ = 0.2 only. Figure 1 shows the MLEs and 
MI estimates for (µx, µy), (σ2

x, σ2
y), and ρ from 

each simulation. The error bars represent 
the standard error (SE) of each estimate. As 
expected, MLE shows minimal bias when the 
sample size is large (n = 200), although esti-
mates are slightly biased when the proportions 
of observations < LOD are large (50–70%). 
MLEs are more biased when the sample size 
is small (n = 50), particularly as proportions 
of censored observations (< LOD) increase. 
For example, when 50% of X and 70% of Y 
are < LOD, MLEs overestimate σ2

x and σ2
y 

by 8% and 16%, respectively, with a sample 
size of 50. Overall, the MI estimates are fairly 
comparable to the MLEs when the sample 
size is large or the degree of censoring is low. 
However, the MI estimates tend to be more 
biased than the MLEs when the sample size 
is small and there is a large amount of censor-
ing (e.g., σ2

x and σ2
y are overestimated by 15% 

and 25%, respectively, when n = 50 and 50% 
of X and 70% of Y are < LOD). Finally, the 
MI estimates are slightly more variable than 
MLEs as indicated by larger SEs. This is prob-
ably due to the bootstrapping and MI process.

Motivating example. We consider data 
from the Community Participatory Approach 
to Measuring Farmworker Pesticide Exposure 
(PACE3) study. This is a longitudinal study 
examining multiple pathways of farmworker 
pesticide exposure, including work environ-
ment, home environment, work and household 
behaviors, and community factors. A total of 
287 farmworkers from 11 counties in eastern 

North Carolina were included in the study in 
2007. Detailed information concerning the 
design and sample collection for the PACE3 
study can be found in Arcury et al. (2009).

For this analysis we focus on the concen-
trations of the urinary acephate (APE). APE 
is an organophosphorus (OP) pesticide widely 
used to treat tobacco (Southern and Sorenson 
2008). As with all OP insecticides, APE is a 
neurotoxin. The immediate health effects of 
small doses of OP insecticides can include 
nausea and vomiting, burning of the nose 
or throat, red or burning eyes, rash, dizzi-
ness, headache, blurred vision, and muscle 
weakness (Reigart and Roberts 1999; Sanborn 
et al. 2004). Immediate health effects of a 
large dose of OP insecticides can be severe 
and include loss of consciousness, coma, and 
death. Long-term health effects of exposure to 
OP insecticides such as APE can occur, par-
ticularly when exposures are repeated, includ-
ing increased risk of neurological decline in 
adults, impaired neurobehavioral develop-
ment of children, several cancers, and repro-
ductive health problems (Eskenazi et al. 2007; 
Perry et al. 2007; Weichenthal et al. 2010).

In this longitudinal study, urinary pesti-
cide concentrations were measured across four 
periods in the agricultural season (period 1, 
May 1 to June 8; period 2, June 9 to July 7; 
period 3, July 8 to August 5; period 4, August 
6 to September 4). Farmworkers involved in 
activities such as topping, harvesting, or cur-
ing pesticide-treated tobacco were almost def-
initely exposed to APE. Therefore, we limited 
our analyses to the repeated measures from 
periods 3 and 4 when most of these activities 
occurred. In addition, we excluded observa-
tions from farmworkers with an APE meas-
urement < LOD who did not top, harvest, 
or barn tobacco during the corresponding 
period, to avoid imputing a positive value for 
a true zero. The final sample comprised 209 
farmworkers.

In each period, the farmworkers also 
responded to interviewer-administered ques-
tionnaires to assess immediate symptoms 
(nausea, burning nose or throat, rash, vomit-
ing, dizziness, headache, red or burning eyes, 
blurred vision, and/or weak or heavy arms in 
the last 3 days) related to potential pesticide 
poisoning. Interviews were completed with 
individual farmworkers at about 1-month 
intervals. Having any of the nine symptoms 
(yes/no) was our primary health outcome in 
this analysis.

Data Analysis and Results
Preliminary analyses indicated that the log-
normal distribution is a reasonable assumption 
for APE concentrations. We then log-trans-
formed all APE values > LOD and the LOD 
itself so that we could apply the method 
described above to estimate distributional 
parameters of a bivariate normal. Table 1 sum-
marizes the eight different data patterns that 
contribute to the overall likelihood function. 
For the two repeated APE measures in peri-
ods 3 and 4, about 38% of observations had 
both values > LOD, and about 8% had both 
values < LOD. Overall, about 13% and 39% 
of the data were < LOD in periods 3 and 4, 
respectively. MLEs of the mean and variance 
of log(APE) concentrations were –0.41 and 
4.75, respectively, for period 3, and –2.70 and 
11.14 for period 4. Estimated APE concentra-
tions in period 4 were lower and more variable 
than in period 3, but, as expected, measure-
ments from these two periods were positively 
correlated (ρ = 0.20).

The MLEs themselves are estimates. 
Therefore, we created five bootstrap data sets 
and obtained five sets of distributional param-
eter estimates that we used to impute values 
< LOD for the original sample. We used nor-
mal quantile–quantile (Q-Q) plots to exam-
ine the overall distribution of the observed 
(> LOD) and the imputed (< LOD) log(APE) 

Figure 2. Normal Q-Q plots for logarithmic APE in periods 3 and 4 normal Q-Q plots of the observed log(APE) values [> log(LOD)] and the imputed APE values 
[< log(LOD)] from each imputed data set for period 3 (A) and period 4 (B). The observed values > log(LOD) [open circles, above the log(LOD) reference line] are 
identical for all five data sets. Imputed values < log(LOD) differ between the data sets (indicated by different-colored dots). Diagonal reference lines indicate the 
estimated bivariate normal distribution based on MLEs for each period. For simplicity, reference lines for the estimated distributions from the five imputed data 
sets are not shown.
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Table 1. Different data patterns for deriving 
maximum likelihood function (frequencies and 
percentages).

Period 3
Period 4 > LOD < LOD Missing
 > LOD 80 (38.3%) 7 (3.3%) 6 (2.9%)
 < LOD 63 (30.1%) 16 (7.7%) 3 (1.4%)
 Missing 29 (13.9%) 5 (2.4%) —



Distribution-based multiple imputation method

Environmental Health Perspectives  •  volume 119 | number 3 | March 2011	 355

concentrations for the five imputed data sets. 
A Q-Q plot compares the empirical quantiles 
based on the data with the quantiles from a 
standard normal distribution. Usually a diag-
onal reference line is drawn with estimated 
population mean as intercept and estimated 
population standard deviation as slope. If 
the points on a Q-Q plot fall on this straight 
reference line, it is supportive of a normal 
distribution assumption. Figure 2 shows the 
normal Q-Q plots of log(APE) concentra-
tions. We present the five imputed data sets 
together in one panel to describe the vari-
ability of the imputed values across different 
imputations. For simplicity, diagonal reference 
lines for the estimated distributions from the 
five imputed data sets are not shown. Instead, 
the diagonal reference lines in Figure 2 are 
based on the MLEs. In addition, we drew a 
horizontal reference line valued at log(LOD) 
to indicate that all the data points above this 
line were observed (> LOD) and therefore 
common to all the imputed data sets and all 
the data points below this line (< LOD) were 
imputed and vary from imputation to impu-
tation. Figure 2 indicates that the imputed 
values and the observed values > LOD in gen-
eral conform to the estimated bivariate normal 
distribution. However, there is a slight curva-
ture around the LOD, especially in period 3, 
that may reflect a lack of data between the 
LOD (0.023) and the minimum measured 
value > LOD in period 3 (0.07). Figure 2 
also shows that the imputed data points over-
lapped substantially.

We then performed linear regression on 
each imputed data set with APE as the outcome 
and combined results from the five imputed 
data sets using SAS PROC MI ANALYZE to 
account for between- and within-imputation 
variability. We applied a linear mixed effects 
model to test whether the mean APE concen-
tration in period 3 was significantly different 
from that in period 4. The estimated mean 
log(APE) ± SE was –0.48 ± 0.23 log ng/mL 
for period 3 and –3.09 ± 0.26 log ng/mL for 
period 4 (p < 0.0001). The model can then be 
expanded easily to incorporate more explana-
tory variables and assess their associations with 
outcome (APE).

Next we used logistic regression models to 
estimate the association between APE expo-
sures and the presence of any symptoms of 
potential pesticide poisoning, using a gen-
eralized estimating equation approach to 
account for the correlations of longitudinal 
data. Overall, 42% and 45% of farmworkers 
experienced at least one of the nine symptoms 
in periods 3 and 4, respectively. We found no 
significant log(APE) by time interaction (p = 
0.15), so our main effect model included only 
time and log(APE) as explanatory variables. 
Time was not significantly associated with 
the outcome (p = 0.17), but a unit increase 

in log(APE) was significantly associated with 
the likelihood of reporting any symptoms 
(odds ratio = 1.07; 95% confidence interval, 
1.00–1.14).

Finally, to illustrate empirically the bene
fit of this distribution-based MI method, we 
repeated the analyses above with the observa-
tions < LOD excluded completely or replaced 
by log(LOD)/2 or log(LOD). The overall 
results from these ad hoc methods were sub-
stantially different from those based on the 
MI method (Table 2), resulting in markedly 
higher estimates for the mean logarithmic 
APE concentrations in both periods and for 
the association between APE concentrations 
and the presence of symptoms.

Discussion
Left-censored data are common in environ-
mental and biomedical research when labo-
ratory analyses of substances of interest are 
constrained by a lower LOD. Additionally, 
researchers often need the explicit values 
for the measurements < LOD to test scien
tific hypotheses. For example, one needs 
to quantify the association between semen 
concentrations and pesticide concentrations 
in reproductive research or the association 
between HIV RNA concentrations and age 
at seroconversion in AIDS research. Without 
valid statistical methods to fill in the values  
< LOD, researchers frequently have to resort 
to categorizing the left-censored data in analy
ses, which may lead to bias and substan-
tial loss of efficiency (Taylor and Yu 2002). 
Therefore, the development of a valid imputa-
tion method is critical for environmental and 
biomedical research.

Single substitution methods are not rec-
ommended unless the proportion of val-
ues < LOD is small, usually < 10% (Helsel 
2005b). MI methods are robust to mild or 
moderate deviations of observed data from 
assumed underlying distribution and take into 
account the uncertainty due to imputation. 
In this article we expand distribution-based 
MI methods for left-censored data from a 
cross-sectional setting (Lubin et al. 2004) to 
a longitudinal setting. In our PACE3 study, 
this imputation method allows an examina-
tion of the associations of pesticide exposure 
with immediate health outcomes measured 
over time. This approach allows us to see that 
even at low concentrations, APE exposure, as 

indicated by measures of the urinary metabo
lite APE, increases the risk of symptoms 
known to result from exposure to OP pesti-
cides. Such analyses have not been available 
with the simple substitution approach when 
the number of values < LOD has been large 
or with the MLE approach because the left-
censored data are used as a predictor.

Literature has shown that MLE does not 
perform well when the degree of left censoring 
is as large as 80% (Helsel 2005b). In fact, it 
is recommended that only the percentage of 
nondetections be reported under such heavy 
censoring. Therefore, because MLE serves as 
the basis of the distribution-based MI method, 
we did not examine scenarios in which > 80% 
of data were < LOD. Overall, our simulation 
results demonstrated that the MLEs based on 
the available information provide a solid theo-
retical basis for generating explicit values for 
the measurements < LOD. The MLEs were 
consistent estimators of true parameter values 
as expected. Simulation results also showed 
that the imputed values and the observed 
measurable values together yielded consistent 
estimates for the assumed underlying distribu-
tion that were not substantially influenced by 
the extent of correlation between the two mea-
surements. Thus, the distribution-based MI 
method is valid and feasible for handling lon-
gitudinal left-censored data, and we therefore 
encourage its application in environmental 
and biomedical research.

We used the normal distribution as the 
basis for imputing values < LOD. This is 
often a reasonable assumption because a large 
number of the environmental exposures and 
biomarkers follow a normal distribution after 
log transformation. However, there are situ-
ations where data may actually come from 
other parametric distributions. For example, 
gamma distributions have many similarities 
with lognormal distributions, and the two 
can be mistaken for one another. When the 
distributional assumption is severely violated, 
some distribution-free imputation methods 
may be considered. Schisterman et al. (2006) 
proposed using least squares methods in a 
regression setting to find a constant that can 
be imputed for all the values < LOD while 
keeping the estimated regression coefficients 
unbiased. The application of this type of non-
parametric imputation approach in a longi-
tudinal setting needs to be studied further. 

Table 2. Comparison of different methods in the analysis of APE data.

Logarithmic APE concentration (mean ± SE)
Prediction for having any symptom 
[with 1-unit increase in log(APE)]

Method Period 3 Period 4 p-Value OR (95% CI) p-Value
MI –0.48 ± 0.23 –3.09 ± 0.26 < 0.0001 1.07 (1.00–1.14) 0.047
Impute log(LOD)/2 –0.019 ± 0.11 –0.92 ± 0.12 < 0.0001 1.13 (0.99–1.28) 0.075
Impute log(LOD) –0.28 ± 0.15 –1.80 ± 0.16 < 0.0001 1.10 (1.00–1.21) 0.062
Exclude nondetects 0.29 ± 0.12 –0.12 ± 0.16 0.020 1.12 (0.95–1.32) 0.17

Abbreviations: CI, confidence interval; OR, odds ratio.
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Overall, a check of the distribution assump-
tion is highly recommended before one pro-
ceeds with more complex analyses.

Finally, we note that the principle of 
the distribution-based MI method can be 
extended to more than two repeated measures.  
However, as the number of repeated meas
ures increases, the number of potential data 
patterns increases. This leads to a more com-
plicated derivation of the likelihood func-
tion. Meanwhile, the number of distribution 
parameters that need to be estimated increases 
accordingly. In particular, the complexity of 
the assumed variance covariance structure can 
pose analytical challenges to the optimization 
techniques. On the other hand, an overly sim-
plistic variance covariance structure may lead 
to bias in the estimation of MLEs and have a 
subsequent negative effect on the imputation 
process. More research is needed in this area.
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